PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023 FLUID MECHANICS \& HYDRAULIC MACHINES
(ME BRANCH)
Time: 3 hours
Max. Marks: 70
Answer all the questions from each UNIT (5X14=70M)

Q.N		Questions	Marks	CO	KL
UNIT-I					
1.	a)	Differentiate between: a) Liquids and Gases b) Cohesion and Adhesion c) Real fluid and Ideal fluid d) Compressible and Incompressible fluids e) Newtonian and Non-Newtonian fluids.	[7M]	1	
	b)	Differentiate between: i) Absolute pressure and gauge pressure ii) Piezometer and simple manometer iii) U-tube differential manometer and inverted U-tube differential manometer. ?	[7M]	1	
OR					
2.	a)	The space between two square flat parallel plates is filled with oil. Each side of the plate is 60 cm . The thickness of the oil film is 12.5 mm . The upper plate, which moves at $2.5 \mathrm{~m} / \mathrm{sec}$, requires a force of 98.1 N to maintain the speed. Determine: (i) The dynamic viscosity of the oil in poise, and (ii) The kinematic viscosity of the oil in stokes if the specific gravity of the oil is 0.95 .	[7M]	1	
	b)	Define viscosity. A plate having an area of 0.7 m 2 is sliding down the inclined plane at 450 to the horizontal with a velocity of $0.45 \mathrm{~m} / \mathrm{s}$. there is a cushion of fluid 2 mm thick between the plane and the plate. Find the viscosity of the fluid if the weight of the plate is 300 N .	[7M]	1	
UNIT-II					
3.	a)	State the momentum equation; In what way does it differ from impulse momentum equation. Mention some of its engineering applications.	[7M]	2	
	b)	Water flows through a pipe AB 1.2 m diameter at $3 \mathrm{~m} / \mathrm{s}$ and then passes through a pipe BC 14.5 m diameter. At C, the pipe branches. Branch CD is 0.8 m in diameter and carries one-third of the flow in AB . The flow velocity in branch CE is $2.5 \mathrm{~m} / \mathrm{s}$. find the volume rate of flow in AB , the velocity in BC , the velocity in CD and the diameter of CE.	[7M]	2	
OR					
4.	a)	Two reservoirs are connected by three pipes laid in parallel, their respective diameters being $\mathrm{d}, 2 \mathrm{~d}$, and 3 d . These are all of the same length 1 . If f is the same for all the pipes find the discharge through the larger pipes if the discharge through the smallest is $0.05 \mathrm{~m} 3 / \mathrm{sec}$	[7M]	2	
	b)	Derive Bernoulli's equation from Euler's equation.	[7M]	2	
UNIT-III					
5.	a)	A jet of water of diameter 60 mm moving with a velocity of $25 \mathrm{~m} / \mathrm{s}$ strikes a fixed plate in such a way that the angle between the jet and the plate is 55°. Find the force exerted by the jet on the plate (i) in the direction normal to the plate, and (ii) in the direction of the jet.	[7M]	3	

	b)	A 15 cm diameter jet of water with a velocity of $15 \mathrm{~m} / \mathrm{s}$ strikes a plane normally. If the plate is moving with a velocity of $6 \mathrm{~m} / \mathrm{s}$ in the direction of the jet calculate the work done per second on the plate and the efficiency (η) of energy transfer.	[7M]	3	
OR					
6.	a)	Derive an expression for head loss due to friction?	[7M]	3	
	b)	Explain the Reynolds's experiment with neat sketch?	[7M]	3	
UNIT-IV					
7.	a)	Differentiate between: (i) The impulse and reaction turbines, (ii) Radial and axial flow turbines and (iii) Kaplan and propeller turbines.	[7M]	4	
	b)	Define Cavitation and derive the derivation of Thomas cavitation factor?	[7M]	4	
OR					
8.	a)	Define the term 'Governing of a turbine'. Describe with a neat sketch the working of an oil pressure governor.	[7M]	4	
	b)	Derive the derivation of specific speed of the turbine?	[7M]	4	
UNIT-V					
9.	a)	How will you determine the possibility of cavitation to occur in the installation of a pump?	[7M]	5	
	b)	Define a centrifugal pump. Explain the working of a single-stage centrifugal pump with sketches.	[7M]	5	
OR					
10.	a)	A double acting reciprocating pump of cylinder diameter 300 mm and stroke of 400 mm is situated at a height of 3.50 meters above the sump water level. The suction pipe is 150 mm in diameter and 6 meters long. If the pump runs at 25 rpm , calculate the absolute pressure head in the cylinder on the suction side at the commencement of the stroke. Take atmospheric pressure head $=10.3$ meters of water.	[7M]	5	
	b)	A centrifugal pump delivers water against a net head of 14.5 m and design speed of 1000 rpm . The vanes are curved back to an angle of 300 with periphery. The impeller diameter is 300 mm and outlet width 50 mm . Determine the discharge of the pump if the manometric efficiency is 95%.	[7M]	5	

